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J.  Phys. A: Math. Gen. 19 (1986) L415-L418. Printed in Great Britain 

LElTER TO THE EDITOR 

Homology and Wess-Zumino terms 

J S Dowker 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK 

Received 2 October 1985 

Abstract. Hopf's formula relating the second homology group to the fundamental group 
is used in a discussion of the nature and quantisation of the Wess-Zumino topological terms. 

General homological criteria for the existence of Wess-Zumino topological terms 
(WZT) in the Lagrangian have been proposed by Alvarez (1985) and Braaten et a1 
(1985) which are supposed to supersede the homotopic criteria of Witten (1983). 

Stated briefly the prescription is as follows. Assume spacetime to be compactified 
to the d-sphere S d  and assume that the field cp takes values in a manifold M. Then 
a WZT is possible if the homological group &+*(Mi Z) contains at least one Z, i.e. if 
the ( d  + 1)th Betti number, bd+l ,  is greater than zero. The actual expression for the 
WZT is the integral of a (d + 1)-form over a rational (d  + 1)-chain, C, on M, whose 
boundary is, up to integer d-cycles, the image of S d  in M via cp. The quantisation of 
the coefficient of the integral (which is further pulled back to an integral over an 
extended (d + 1)-dimensional spacetime) follows by requiring the ambiguity in C, a 
rational cycle in general, to have no effect when the term is exponentiated, just as in 
the theory of the magnetic monopole (Witten 1983, Dirac 1931). 

Braaten et a1 (1985) further claim that when &( M ;  Z) has torsion the quantisation 
is not integral but multiply integral and that, if & ( M ;  Z) has a free part, an extra bd 
numbers are required to specify the WZT. 

The modest aim of this letter is to point out that these claims are not geDerally correct. 
In the following all homology groups will be integral ones and so the coefficient 

group Z will not be indicated. 
The argument of Braaten et a1 (1985) involves expanding cp(Sd)  as a general d-cycle 

on M. However cp(Sd)  is clearly be definition a spherical d-cycle and the spherical 
homology classes, & ( M ) ,  form a subgroup of H d  ( M ) .  In fact & ( M )  is the image of 
T d ( M )  in &( M )  under the Hurewicz (natural) homomorphism (e.g. Maunder 1970, 
p 322). Hence, very simply, if T d ( M )  is trivial there are no further conditions on the 
WZT and C is ambiguous up to an integral cycle. (This is only a sufficient condition.) 

T d ( M )  is trivial for the n-torus if d is greater than one so that in the example d = 2 
and M = S' x SI x SI, considered by Braaten et al (1989, there are no extra require- 
ments. However for d = 2, M = S2 x S' we have rTTZ = X2 = H2 = Z and in this case an 
extra constant is needed in their definition of the WZT. 

Thus, if we can evaluate T d ( M ) ,  we can find E d  and proceed as in Braaten et a1 
(1985) but replacing k f d  by X d .  
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If d = 2 we can avoid evaluating r2( M ) ,  if we know rl( M ) ,  by employing Hopf s 
famous formula 

H , ( M ) / X , ( M )  = H2(TI) (1) 

expressed in homological terms (e.g. Hu 1959, p 201)). This, sometimes, tells us the 
difference between H2 and r2. If T, is Abelian, r , ( M )  can be replaced by H l ( M )  
and (1) is then purely homological, which means it is computable. For simplicity 
assume that r, is Abelian; then it is easy to show using Kunneth’s formula that 

H 2 ( r l ) =  H2( T ) +  blH,( T )+fb , (b ,  - l)Z 
where T is the torsion part of H , ( M ) .  For any given T, Kunneth’s formula can again 
be applied to give H2( T) and Hl( T). Thus for T = Z, 

H2( T I )  = fb1( b, - 1)Z + b,Z, 

and for T = E ,  + E,, 

H2(771) =fb , (b , - l )E+b , (Ep+E, )+~ , , , , .  ( 2 )  

A general formula can be given (Hopf 1942) but is not needed here; ( p ,  q )  is the 
highest common factor of p and q. 

If H2( T,) is compared with H2( M )  we see that an extra b2 -$,( b, - 1) constants 
are required. In general the number will be b2( M )  - b2( r,). (If rl is free non-Abelian 

As an example with torsion consider M = S 2  x S 2 / E 2  (non-orientable). Then H2( T , )  = 
Z2 and, from general considerations or Kunneth’s formula, H 2 ( M )  = E + Z 2  so that 
X,( M )  = E .  (This result also follows easily from r2( M )  = 22.) Thus the quantisation 
is a normal, integral one and not one in even integers. The same conclusion holds for 
M = S’ x S 3 / E ,  x S 3 / E ,  for which H2( T,) is given by (2) with b, = 1 and equals H2( M ) .  
(Again this also follows most quickly from r2( M )  = O !  The advantage of formula (1) 
only appears when r 2 ( M )  is difficult to find.) 

For arbitrary dimension d the ideal procedure would be to find T d  and then 
construct x d  using the Hurewicz homomorphism. If the non-trivial homotopy of M 
starts at dimension d - 1 then Hurewicz’s theorem says that r d - ] =  Hd-I (M) ,  = r say. 
The analogue of Hopf s formula is now 

bz(Ti)=O.) 

H d  ( M ) / Z d  ( M ,  = H d  ( r, d - 1 ( 3 )  
where (r, n) is a space, for example an Eilenberg-MacLane space, whose only non- 
trivial homotopy group is r,, = r. Again this is a purely homological formula. 

Another formula results if r i ( M )  is trivial for 1 < i < d. Then we have 

H d  ( M )/ x d  ( ) = H d  ( T I  

(e.g. Hu 1959, p 201). For example if M = S d  x T‘, where T‘ is the t-torus, r , ( M )  is 
free Abelian with t generators. Then & ( T I )  is free Abelian with (:) generators, if 
t 5 d, so from (3) we see that b2d -(:) extra constants are required. Of course in this 
example T d ( d ( M )  = E so that E d  can be constructed directly. Other examples can be 
found in Hopf (1943). 

For d = 2 the necessary and sufficient condition that the statements of Braaten et 
af (1985) should be correct is that H 2 ( r l )  be trivial. This will be the case if r, itself 
is trivial of course, but will also be true when n1 consists of a single cyclic group or 
when it is free non-Abelian as, for example, when M is a 2-sphere minus three points. 
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Incidentally if r, is only known by its presentation as a group with n generators and 
r relations it is still possible to give an upper bound to the dimension of H2(7rl), i.e. 
to b2( rl )  (e.g. Rotman 1979). This yields a lower bound to the number of free generators 
in Z, equal to b, - r - b, + n. (If r, is free non-Abelian r = 0 and b, = n.) It is thus seen 
that the statements of Braaten er a1 (1985) regarding the number of extra constants 
will be correct if bl = n - r. 

In higher dimensions the necessary and sufficient conditions for Z d ( M )  to equal 
H d  ( M )  do not seem to have been worked out. 

Turning to more general considerations it is known in the case of quantum mechanics 
on R3 - (0) that the existence of a free part to H2( M )  corresponds to the possibility 
of there being a monopole on (0). The curvature of the wavefunction (complex) line 
bundle is the magnetic field and has integral periods corresponding to magnetic charge 
quantisation (e.g. Kostant 1970, Simms and Woodhouse 1976, Greub and Petry 1975). 
H 2 ( M )  catalogues the isomorphism classes of complex line bundles over M (e.g. 
Cartan 1950) and a form realisation of the cohomology, which exhibits the Dirac 
string, can be found in Allendoerfer and Eells (1957) (see also Isham 1978). 

In field theory the classes of wavefunctionals, 9[ 91, will similarly be catalogued 
by H 2 ( M x )  where X is the spatial section of spacetime. We can take X to be 
compactified to Sd-' for topological purposes. It is our contention that the free part 
of this H 2  corresponds to the existence of 'functional monopoles'. 

The relevant theory is that of the cohomology of iterated loop spaces. 
If d = 2  a standard result can be applied if M is a sphere (e.g. Hu 1959, Bott and 

Tu 1982, p 203). It is known that 

H * ( W )  = E  in all dimensions 

and 

H*(RS") = z in dimensions 0, n - 1,2(n - l ) ,  . . . 
= O  otherwise. 

For example H 2 ( n S 2 )  = Z and H2(RS3) = H, where Cl"M is the iterated loop space 
M S n .  In both cases functional monopole configuration exist, although there would be 
no WZT term for S2,  according to the rules of Alvarez. A discussion of the significance 
and analytical details of these monopoles is left for another time. 

There is a subsidiary classification of quantum theories according to the character 
group of the fundamental group of the configuration space. It can bt: expressed 
homologically as follows. The subsidiary classes are in one-to-one correspondence 
with Hom( r,, B) where B is the group of real numbers modulo unity. (Equivalent to 
B are SI, U(1) and @* = Q= -{O}.) Now Hom(r , ,  3) = Hom(H,, 9) = b,%+ TI where 
TI is the torsion part of HI. The classes are therefore labelled by b, real numbers, (y, 

each between 0 and 4, and also by the torsion labels. The latter are already accounted 
for in the H2 classification because H 2  and HI have the same torsion. If a non-zero 
b2 corresponds to a monopole, a non-zero b, corresponds to an Aharonov-Bohm flux 
tube (Dowker 1979). 

For quantum field theory r, is n d ( M )  which therefore equals HI(Rd-'M). If M 
is simply connected we know that r 2 ( M )  = H , ( M )  and so, in two dimensions, 
H I ( Q M )  = H,(M) .  Since the free parts of the corresponding cohomology groups can 
be identified, the l-form integrals on the functional space needed to remove the 
multivaluedness of the wavefunctional (Dowker 1979, 1985) can be replaced by 2-form 
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integrals on the target space M. If one wishes to express the integral cohomology 
('functional Chern') classes of H 2 ( Q M )  in terms of 3-forms on M, like the WZT, it is 
sufficient to have r , ( M )  and r 2 ( M )  trivial because then H2(S1M) = 7r2(nM) = 
r 3 ( M )  = H3( M ) .  M = SU( n )  is a good example. In d dimensions the corresponding 
statement is that r i ( M )  should be trivial for 1 is d. This is true for the sphere Sd+'  
but not for compact simple Lie groups, for which r3 is H. However the condition is 
only a sufficient one. The necessary conditions remain to be worked out for b2(Rd-'M) 
to equal b d + , ( M ) .  

That the above conditions are too stringent is seen by considering the standard 
case of M = SU(3) and d = 4, since then r4 is trivial and r5 = H5 = Z. 

If r d  is trivial the classification of functional monopoles by the free part of 
H 2 ( n d - ' M ) ,  = free part of H 2 ( n d - ' M ) ,  is the same as Witten's homotopic classification 
since then H 2 ( f l d - ' M )  = ? r d + l .  Incidentally, if d = 7 and M = SU(3) we have r , ( M )  = 
H,(M)  = 0 and H , ( M )  = Z, r8 = H 1 2 .  Thus, since rs has no free part, we would not 
expect a WZT according to Witten but because H,=H there would be such a term 
according to Alvarez. The rational functional Chern classes are trivial in this case. 
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